Photometric Redshift Estimation with Galaxy Morphology Using Self-organizing Maps

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galaxy Morphology without Classification : Self Organizing Maps

We examine a general framework for visualizing datasets of high (> 2) dimensionality, and demonstrate it using the morphology of galaxies at moderate redshifts. The distributions of various populations of such galaxies are examined in a space spanned by four purely morphological parameters. Galaxy images are taken from the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2) in th...

متن کامل

using game theory techniques in self-organizing maps training

شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...

SOMz: photometric redshift PDFs with self organizing maps and random atlas

In this paper we explore the applicability of the unsupervised machine learning technique of Self Organizing Maps (SOM) to estimate galaxy photometric redshift probability density functions (PDFs). This technique takes a spectroscopic training set, and maps the photometric attributes, but not the redshifts, to a two dimensional surface by using a process of competitive learning where neurons co...

متن کامل

Photometric Redshift Estimation Using Spectral Connectivity Analysis

The development of fast and accurate methods of photometric redshift estimation is a vital step towards being able to fully utilize the data of next-generation surveys within precision cosmology. In this paper we apply a specific approach to spectral connectivity analysis (SCA; Lee & Wasserman 2009) called diffusion map. SCA is a class of nonlinear techniques for transforming observed data (e.g...

متن کامل

Photometric redshift estimation using Gaussian processes

We present a comparison between Gaussian processes (GPs) and artificial neural networks (ANNs) as methods for determining photometric redshifts for galaxies, given training set data. In particular, we compare their degradation in performance as the training set size is degraded in ways which might be caused by the observational limitations of spectroscopy. Using publicly-available regression co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Astrophysical Journal

سال: 2020

ISSN: 1538-4357

DOI: 10.3847/1538-4357/ab5a79