Photometric Redshift Estimation with Galaxy Morphology Using Self-organizing Maps
نویسندگان
چکیده
منابع مشابه
Galaxy Morphology without Classification : Self Organizing Maps
We examine a general framework for visualizing datasets of high (> 2) dimensionality, and demonstrate it using the morphology of galaxies at moderate redshifts. The distributions of various populations of such galaxies are examined in a space spanned by four purely morphological parameters. Galaxy images are taken from the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2) in th...
متن کاملusing game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
SOMz: photometric redshift PDFs with self organizing maps and random atlas
In this paper we explore the applicability of the unsupervised machine learning technique of Self Organizing Maps (SOM) to estimate galaxy photometric redshift probability density functions (PDFs). This technique takes a spectroscopic training set, and maps the photometric attributes, but not the redshifts, to a two dimensional surface by using a process of competitive learning where neurons co...
متن کاملPhotometric Redshift Estimation Using Spectral Connectivity Analysis
The development of fast and accurate methods of photometric redshift estimation is a vital step towards being able to fully utilize the data of next-generation surveys within precision cosmology. In this paper we apply a specific approach to spectral connectivity analysis (SCA; Lee & Wasserman 2009) called diffusion map. SCA is a class of nonlinear techniques for transforming observed data (e.g...
متن کاملPhotometric redshift estimation using Gaussian processes
We present a comparison between Gaussian processes (GPs) and artificial neural networks (ANNs) as methods for determining photometric redshifts for galaxies, given training set data. In particular, we compare their degradation in performance as the training set size is degraded in ways which might be caused by the observational limitations of spectroscopy. Using publicly-available regression co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal
سال: 2020
ISSN: 1538-4357
DOI: 10.3847/1538-4357/ab5a79